Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level☆
نویسندگان
چکیده
Standard univariate analyses of brain imaging data have revealed a host of structural and functional brain alterations in schizophrenia. However, these analyses typically involve examining each voxel separately and making inferences at group-level, thus limiting clinical translation of their findings. Taking into account the fact that brain alterations in schizophrenia expand over a widely distributed network of brain regions, univariate analysis methods may not be the most suited choice for imaging data analysis. To address these limitations, the neuroimaging community has turned to machine learning methods both because of their ability to examine voxels jointly and their potential for making inferences at a single-subject level. This article provides a critical overview of the current and foreseeable applications of machine learning, in identifying imaging-based biomarkers that could be used for the diagnosis, early detection and treatment response of schizophrenia, and could, thus, be of high clinical relevance. We discuss promising future research directions and the main difficulties facing machine learning researchers as far as their potential translation into clinical practice is concerned.
منابع مشابه
Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study.
BACKGROUND Reliable prognostic biomarkers are needed for the early recognition of psychosis. Recently, multivariate machine learning methods have demonstrated the feasibility to predict illness onset in clinically defined at-risk individuals using structural magnetic resonance imaging (MRI) data. However, it remains unclear whether these findings could be replicated in independent populations. ...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملIncreasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملMultisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals.
Past work on relatively small, single-site studies using regional volumetry, and more recently machine learning methods, has shown that widespread structural brain abnormalities are prominent in schizophrenia. However, to be clinically useful, structural imaging biomarkers must integrate high-dimensional data and provide reproducible results across clinical populations and on an individual pers...
متن کاملIdentification of climatic comfort areas Khuzestan province using multivariate analysis and spatial autocorrelation pattern with emphasis on architecture
Abstract In the history of humanity, human always has suffered all difficulties with effort to reach to comfort and well-being until the human provides a way to achieve the comfort. In the viewpoint of climate four elements have significant role in formation of human comfort and discomfort conditions that according to the climatic conditions in different areas, the type and effect of these el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013